Влияние инсулина на белковый обмен

Причины кетоза и ацидоза. Влияние инсулина на обмен белка

Влияние инсулина на белковый обмен

Повышенное использование жиров в связи с отсутствием инсулина является причиной кетоза и ацидоза. Отсутствие инсулина приводит к повышенному образованию ацетоуксусной кислоты в печени.

Это является результатом следующих событий: при отсутствии инсулина на фоне избытка жирных кислот в печени заметно активируется транспортный механизм, представленный карнитином, обеспечивающий поступление жирных кислот в митохондрии.

В митохондриях быстро совершается процесс бета-окисления жирных кислот, при этом образуется чрезвычайно большое количество ацетил-КоА. Избыток ацетил-КоА объединяется в виде ацетоуксусной кислоты, которая в итоге поступает в кровоток.

Далее она доставляется периферическим клеткам, где вновь превращается в ацетил-КоА и используется для получения энергии обычным способом.

В то же время отсутствие инсулина снижает использование ацетоуксусной кислоты периферическими тканями, поэтому большое количество выделяющейся из печени ацетоуксусной кислоты не может быть метаболизировано тканями. Это приводит к значительному увеличению ее концентрации после прекращения секреции инсулина, поэтому иногда ее концентрация превышает 10 мэкв/л, что можно считать проявлением тяжелого ацидоза.

Часть ацетоуксусной кислоты превращается в гидроксимасляную кислоту и ацетон. Эти два вещества наряду с ацетоуксусной кислотой называют кетоновыми телами, и их присутствие в больших количествах в жидких средах организма называют кетозом. Далее увидим, что при тяжелом диабете ацетоуксусная и гидроксимасляная кислоты могут явиться причиной тяжелого ацидоза и комы, приводящих к смерти.

Влияние инсулина на обмен белка

Инсулин обеспечивает синтез и хранение белков.

В течение нескольких часов после еды, когда в крови присутствует чрезвычайно большое количество питательных веществ, не только углеводы и жиры, но и белки могут запасаться в тканях. Для этого нужен инсулин.

Способ, с помощью которого инсулин обеспечивает хранение белка, не вполне понятен, в отличие от механизмов, существующих для углеводов и жиров. Приведем некоторые факты.

1. Инсулин стимулирует поступление многих аминокислот в клетки. Из всех известных аминокислот инсулин стимулирует транспорт преимущественно валина, лейцина, изолейцина, тирозина и фенилаланина.

Таким образом, инсулин наряду с гормоном роста обладает способностью увеличивать поступление в клетки аминокислот. Хотя, по-видимому, эти гормоны стимулируют избирательное их поступление.
2. Инсулин стимулирует процессы трансляции, что приводит к образованию новых белков.

Необъяснимым образом инсулин «включает» рибосомальные механизмы. При отсутствии инсулина эти структуры работу приостанавливают.

3. Инсулин увеличивает скорость транскрипции определенных генов в клеточном ядре с большим латентным периодом, что приводит к увеличению количества образующейся РНК. Таким образом, инсулин еще больше стимулирует синтез белка, особенно многочисленных ферментов, обеспечивающих хранение углеводов, жиров и белков.
4.

Инсулин тормозит катаболизм белков, уменьшая скорость высвобождения аминокислот из клеток, особенно мышечных. Возможно, это является результатом способности инсулина уменьшать обычное расщепление белков лизосомами клеток.
5. В печени инсулин подавляет скорость глюконеогенеза.

Это достигается снижением активности ферментов, обеспечивающих глюконеогенез. Вследствие того, что наиболее употребимым субстратом для синтеза глюкозы в процессе глюконеогенеза являются аминокислоты, подавление глюконеогенеза способствует сохранению аминокислот в виде белков в клетках.

Подводя итог, можно сказать, что инсулин обеспечивает образование белка и предупреждает его распад.

– Также рекомендуем “Влияние инсулина на рост. Механизм секреции инсулина”

Оглавление темы “Функции и секреция инсулина”:
1. Адреногенитальный синдром. Выработка инсулина поджелудочной железой
2. Структура инсулина. Синтез инсулина
3. Физиология инсулина. Воздействие инсулина на клетку
4. Влияние инсулина на обмен углеводов. Обмен глюкозы под действием инсулина
5. Влияние инсулина на обмен глюкозы в печени. Высвобождение глюкозы из печени
6. Инсулин и глюкоза мозга. Влияние инсулина на обмен жиров
7. Причины кетоза и ацидоза. Влияние инсулина на обмен белка
8. Влияние инсулина на рост. Механизм секреции инсулина
9. Регуляция выделения инсулина. Стимуляция секреции инсулина
10. Влияние аминокислот и гормонов на секрецию инсулина. Инсулин в углеводно-жировом обмене

Источник: https://meduniver.com/Medical/Physiology/1303.html

Влияние инсулина на обмен веществ

Влияние инсулина на белковый обмен

Инсулин оказывает влияние на все виды обмена веществ, способствует анаболическим процессам, увеличивает синтез гликогена, жиров и белков, тормозя эффекты многочисленных контринсулярных гормонов (глюкагона, катехоламинов, глюкокортикоидов и соматотропина).

Все эффекты инсулина подразделяются на 4 группы:

1. очень быстрые (через несколько секунд) – гиперполяризация мембран клеток (за исключением гепатоцитов), повышение проницаемости для глюкозы, активация Na+К+-АТФазы, входа К+ и откачивания Na+, подавление Са2+- насоса и задержка Са2+;

2. быстрые эффекты (в течение нескольких минут) – активация и торможение различных ферментов, подавляющих катаболизм и усиливающих анаболические процессы;

3. медленные процессы (в течение нескольких часов) – повышение поглощения аминокислот, изменение синтеза РНК и белков-ферментов;

4. очень медленные эффекты (то часов до суток) – активация митогенеза и размножения клеток.

Инсулин оказывает влияние практически на все органы и ткани, однако его главными мишенями служат печень, мышечная и жировая ткань.

Важнейшим эффектом инсулина в организме является увеличение в транспорта глюкозы через мембраны мышечных и жировых клеток путем облегченной диффузии по градиенту концентрации с помощью чувствительных к гормону мембранных белковых переносчиков, называемых ГЛЮТ. В мембранах разных видов клеток выявлены 6 типов ГЛЮТ, но только ГЛЮТ-4 – является инсулинзависимым и находится на мембранах клеток скелетных мышц, миокарда, жировой ткани.

Инсулин влияет на все виды обмена веществ и оказывает следующие эффекты:

На углеводный обмен:

– усиливает транспорт глюкозы через клеточную мембрану и ее утилизацию тканями, снижает уровень глюкозы крови

– подавляет распад и стимулирует синтез гликогена

– угнетает глюконеогенез

– активирует процессы гликолиза

На жировой обмен:

– угнетает липолиз, что приводит к снижению поступления свободных жирных кислот в кровоток

– препятствует образованию кетоновых тел в организме

– стимулирует синтез триглицеридов и жирных кислот из глюкозы

На белковый обмен:

– повышает проницаемость мембран для аминокислот

– усиливает синтез иРНК

– стимулирует синтез и подавляет распад белка

ПОКАЗАНИЯ К ПРИМЕНЕНИЮ ИНСУЛИНОТЕРАПИИ

1. Сахарный диабет I типа.

2. Резистентность к синтетическим пероральным сахароснижающим средствам при сахарном диабете II типа.

3. Декомпенсация сахарного диабета, вызванная различными факторами (острые сопутствующие заболевания, травмы, инфекции).

4. Гипергликемические комы.

5. Тяжелые поражения печени и почек при сахарном диабете II типа, когда невозможно применить синтетические пероральные сахароснижающие средства.

6. Плохое заживление ран.

7. Выраженное истощение.

ПОБОЧНЫЕ ЭФФЕКТЫ ИНСУЛИНА.

1. Гипогликемические реакции.

2. Липодистрофии в месте введения.

3. Инсулинорезистентность.

4. Местные и системные аллергические реакции.

ПРОТИВОПОКАЗАНИЯ.

1. Заболевания, протекающие с гипогликемией.

2. Амилоидоз почек.

3. Язва желудка и двенадцатиперстной кишки.

4. Декомпенсированные пороки сердца.

ПРОИЗВОДНЫЕ СУЛЬФОНИЛМОЧЕВИНЫ

I поколение II поколение

Бутамид Глибенкламид (Манинил, Даонил)

Толбутамид Глипизид (Антидиаб, Глибенез)

Хлорпропамид Гликлазид (Диабетон)

Гликвидон (Глюренорм)

Глимепирид (Амарил)

МЕГЛИТИНИДЫ

Репаглинид –произв. бензойной кислоты

Натеглинид –произв. D-фенилаланина

МЕХАНИЗМ ДЕЙСТВИЯ

– стимулируют β-клетки поджелудочной железы и повышают выработку эндогенного инсулина.

– снижают активность инсулиназы.

– тормозят связывание инсулина с антителами и белками плазмы крови.

– снижают активность фосфорилазы и тормозят гликогенолиз.

ПОКАЗАНИЯ К ПРИМЕНЕНИЮ

Сахарный диабет II типа (при невозможности компенсации гипергликемии диетой).

ПОБОЧНЫЕ ЭФФЕКТЫ

1. Гипогликемические реакции.

2. Увеличение массы тела.

3. Повышение чувствительности к алкоголю.

4. Гипонатриемия.

5. Тошнота, рвота.

6. При длительном применении – нарушение функции печени и почек.

7. Нарушение кроветворения: агранулоцитоз, тромбопения, гемолитическая анемия.

8. Аллергические реакции.

9. Фотосенсибилизация (фотодерматоз).

ПРОТИВОПОКАЗАНИЯ

1. Сахарный диабет I типа и все диабетические комы.

2. Выраженные нарушения функции печени и/или почек.

3. Беременность, лактация.

4. Повышенная чувствительность к производным сульфонилмочевины.

БИГУАНИДЫ

Буформин (Адебит, Глибутид)

Метформин (Сиофор, Глюкофаг)

МЕХАНИЗМ ДЕЙСТВИЯ

Тормозят инактивацию эндогенного инсулина, снижают всасывание углеводов в кишечнике, повышают потребление глюкозы клетками без образования гликогена и стимулируют анаэробный гликолиз.

ПОКАЗАНИЯ К ПРИМЕНЕНИЮ

Сахарный диабет II типа (особенно в сочетании с ожирением).

ПОБОЧНЫЕ ЭФФЕКТЫ

1. Диарея.

2. Диспепсические явления.

3. Металлический привкус во рту.

4. Анорексия.

5. Мегалобластическая анемия (редко).

6. Лактоацидоз (буформин).

ПРОТИВОПОКАЗАНИЯ

1. Сахарный диабет I типа и все диабетические комы.

2. Нарушения функции почек.

3. Любые состояния, сопровождающиеся гипоксией.

5. Наличие лактоацидоза в анамнезе.

6. Хронический алкоголизм.

7. Операции и травмы.

8. Заболевания печени или повышение активности печеночных ферментов в 2 и более раза по сравнению с нормой.

9. Период повышенных физических нагрузок.

10 Беременность, лактация.

ПРОИЗВОДНЫЕ ТИАЗОЛИДИНДИОНА

Розиглитазон

Пиоглитазон (актос)

МЕХАНИЗМ ДЕЙСТВИЯ

Повышают чувствительность тканей к инсулину. Взаимодействуют со специфическими ядерными рецепторами, что транскрипцию некоторых инсулинчувствительных генов и в итоге снижается резистентность к инсулину. Повышают захват тканями глюкозы, жирных кислот, усиливают липогенез, угнетают глюконеогенез.

ПОКАЗАНИЯ К ПРИМЕНЕНИЮ

Сахарный диабет II типа, на фоне недостаточности продукции эндогенного инсулина, а также при развитии инсулинорезистентности.

ПОБОЧНЫЕ ЭФФЕКТЫ

1. Гипогликемические реакции.

2. Отеки.

3. Анемия.

4. Аллергические реакции.

ПРОТИВОПОКАЗАНИЯ

1. Диабетические комы.

2. Выраженные нарушения функции печени и почек.

3. Беременность, лактация.

ИНГИБИТОРЫ α-ГЛИКОЗИДАЗ

Акарбоза (Глюкобай)

МЕХАНИЗМ ДЕЙСТВИЯ

– угнетают интестинальные α-гликозидазы, что приводит к замедлению усвоения углеводов и снижению поглощения глюкозы из сахаридов

– снижают суточные колебания содержания глюкозы в крови

– усиливают действие диабетической диеты

ПОКАЗАНИЯ К ПРИМЕНЕНИЮ

Сахарный диабет II типа (при невозможности компенсации гипергликемии диетой).

ПОБОЧНЫЕ ЭФФЕКТЫ

1. Метеоризм.

2. Боли в эпигастральной области.

3. Диарея.

4. Аллергические реакции (редко).

ПРОТИВОПОКАЗАНИЯ

1. Хронические заболевания кишечника, протекающие с выраженными нарушениями пищеварения и абсорбции (неспецифический язвенный колит).

2. Грыжи больших размеров.

3. Сужение и язвы кишечника.

4. Беременность и лактация.

ИНКРЕТИНОМИМЕТИКИ

Инкретины –это гормоны, которые секретируются некоторыми типами клеток тонкого кишечника в ответ на прием пищи и стимулируют секрецию инсулина.

Выделяют 2 гормона.

1.Глюкозозависимый инсулинотропный пептид (ГИП)

2. Глюкогонподобный полипептид (ГПП-1)

При экзогенном введении инкретинов на фоне сахарного диабета 2 типа только ГПП-1 проявлял достаточный инсулинотропный эффект, в связи с чем подходил для создания препаратов на его основе.

Созданные препараты можно разделить на 2 группы:

1. Вещества, имитирующие действие ГПП-1 – аналоги ГПП-1

2. Вещества, пролонгирующие действие эндогенного ГПП-1 вследствие блокады дипептидилпептидазы-4 (ДПП-4) – вермента, разрушающего ГПП-1– Ингибиторы ДПП-4

ИНКРЕТИНОМИМЕТИКИ

1.Аналоги глюкогонподобного полипептида-1 (ГПП-1)

Эксенатид (Баета)

Лираглутид (Виктоза)

МЕХАНИЗМ ДЕЙСТВИЯ

Стимулирует рецепторы к глюкагонподобному полипептиду-1 и вызывает следующие эффекты:

1.Улучшают функцию β-клеток поджелудочной железы, усиливают глюкозозависимую секрецию инсулина. Секреция инсулина прекращается по мере того, как снижается концентрация глюкозы в крови (т.е. снижается риск развития гипогликемии).

2. Восстанавливают или значительно усиливают как 1-ю так и 2-ю фазу инсулинового ответа.

3. Подавляют избыточную секрецию глюкагона, но не нарушают нормального глюкагонового ответа на гипогликемию.

4. Уменьшают чувство голода

2. Ингибиторы дипептидилпептидазы -4 (ДПП-4)

Ситаглиптин (Янувия)

Вилдаглиптин (Галвус)

Саксаглиптин

МЕХАНИЗМ ДЕЙСТВИЯ

Подавляя действие фермента ДПП-4, увеличивают уровень и продолжительность жизни эндогенных глюкозозависимого инсулинотропного пептида (ГИП) и ГПП-1, способствуя усилению их физиологического инсулинотропного действия.

ПОКАЗАНИЯ К ПРИМЕНЕНИЮ

Сахарный диабет II типа

– монотерапия: в качестве дополнения к диете и физическим нагрузкам;

– комбинированная терапия в сочетании с другими сахароснижающими средствами.

ПОБОЧНЫЕ ЭФФЕКТЫ

1. Тошнота, рвота, диарея

2. Снижение аппетита

3. Боли в эпигастральной области

4. Беспокойство

5. Головокружение

6. Головная боль

7. Сонливость

ПРОТИВОПОКАЗАНИЯ

1. Сахарный диабет I типа и диабетические комы

2. Беременность, лактация

3.Нарушение функции печени

4. Сердечная недостаточность.

5. Воспалительные заболевания кишечника

6. Детский и подростковый возраст до 18 лет.

7. Повышенная чувствительность к препаратам.

ЭСТРОГЕННЫЕ ПРЕПАРАТЫ

1. Эстрогенные препараты стероидного строения:

ЭСТРОН (фолликулин)

ЭСТРАДИОЛ (дерместрил, климара, прогинова)

ЭТИНИЛЭСТРАДИОЛ (микрофоллин)

ЭСТРИОЛ (овестин)

2. Эстрогенные препараты нестероидного строения:

СИНЕСТРОЛ (гексэстрол)

ДИЭТИЛСТИЛЬБЭСТРОЛ

ДИМЭСТРОЛ

СИГЕТИН

ПОКАЗАНИЯ К ПРИМЕНЕНИЮ

Патологические состояния, связанные с недостаточной функцией яичников:

1. Первичная и вторичная аменорея.

2. Гипоплазия половых органов и вторичных половых признаков.

3. Климактерические и посткастрационные расстройства.

4. Бесплодие.

5. Слабость родовой деятельности.

6. Профилактика и лечение остеопороза у женщин в период менопаузы.

7. Гипертрофия и рак предстательной железы у мужчин (синтетические препараты нестероидной структуры).

8. Пероральная и имплантируемая контрацепция.

АНТИЭСТРОГЕННЫЕ ПРЕПАРАТЫ

КЛОМИФЕН (клостильбегит,кломид)

ТАМОКСИФЕН

ТОРЕМИФЕН (фарестон)

МЕХАНИЗМ ДЕЙСТВИЯ

1. Блокируют эстрогеновые рецепторы и устраняют действие эстрогенов.

2. Блокируя эстрогеновые рецепторы в гипоталамусе и гипофизе, нарушают систему обратной связи, что приводит к усилению выработки гонадотропных гормонов и, как следствие, увеличению размеров яичников и повышению их функции.

ПОКАЗАНИЯ К ПРИМЕНЕНИЮ

1. Ановуляторная дисфункция яичников и связанное с ней бесплодие.

2. Дисфункциональное маточное кровотечение.

3. Дисгонадотропные формы аменореи.

4. Андрогенная недостаточность.

5. Олигоспермия.

6. Задержка полового и физического развития у подростков мужского пола.



Источник: https://infopedia.su/5xd14.html

Инсулин Влияние на углеводный, жировой и белковый обмен

Влияние инсулина на белковый обмен

Инсулин Влияние на углеводный, жировой и белковый обмен

Инсулин— гормон пептидной природы, образуется в бета-клетках островков Лангерганса поджелудочной железы. Оказывает многогранное влияние на обмен практически во всех тканях. Инсулин оказывает влияние практически на все органы и ткани. Однако его главными мишенями служат печень, мышечная и жировая ткань.

Действие инсулина Увеличивает проницаемость плазматических мембран для глюкозы Активирует ключевые ферменты гликолиза, стимулирует образование в печени и мышцах из глюкозы гликогена Усиливает синтез жиров и белков Подавляет активность ферментов, расщепляющих гликоген и жиры (анаболическое действие) Обладает антикатаболическим эффектом.

Метаболизм инсулина Инсулин и C-пептид в крови циркулируют в свободной форме 3 -5 мин. Более половины инсулина расщепляется в печени сразу же при поступлении в этот орган по портальным венам. C-пептид не разрушается в печени, а выделяется через почки.

По этим причинам достоверным лабораторным показателем секреции инсулина является не сам гормон (инсулин), а именно C-пептид. Эффект инсулина в захвате и метаболизме глюкозы. Связывание рецептора с инсулином(1) запускает активацию большого количества белков (2).

Например перенос Glut-4 -переносчика на плазматическую мембрану и поступление глюкозы внутрь клетки(3), синтез гликогена(4), гликолиз (5), синтез жирных кислот (6).

Секреция инсулина регулируется нейрогуморальными факторами: парасимпатическая нервная система (через М 3 -холинорецепторы) усиливает, а симпатическая нервная система (через α 2 -адренорецепторы) угнетает выделение инсулина β-клетками.

Соматостатин, продуцируемый D-клетками, препятствует выделению инсулина, а некоторые аминокислоты (фенилаланин), жирные кислоты, глюкагон, амилин, инкретины (глюка- гоноподобный полипептид-1, гастроингибирующий полипептид) и глюкоза – усиливают.

Определяющий фактор регуляции выделения инсулина – уровень глюкозы в плазме крови. Глюкоза проникает в β-клетку с помощью специфического транспортера GLUT-2 и запускает каскад метаболических реакций. В результате в β -клетках возрастает концентрация АТФ.

Это приводит к инактивации АТФ-зависимых калиевых каналов, и мембрана β-клетки деполяризуется, при этом увеличивается частота открытия потенциалозависимых кальциевых каналов.

Концентрация ионов кальция в βклетках увеличивается, приводя к усилению экзоцитоза инсулина.

Инсулин регулирует основной обмен, а также рост тканей. Механизм влияния инсулина на рост тканей аналогичен механизму действия инсулиноподобных факторов роста. Влияние инсулина на обмен веществ в целом можно охарактеризовать как анаболическое (гормон усиливает синтез белка, жиров, гликогена).

Первостепенное значение имеет влияние инсулина на углеводный обмен. При недостаточной продукции эндогенного инсулина развивается сахарный диабет. Его основные симптомы: гипергликемия, глюкозурия, полидипсия, кетоацидоз, ангиопатии и др. Одна из причин гипогликемии – увеличение захвата глюкозы тканями.

Секреция инсулина в зависимости от уровня глюкозы в крови

Через гистогематические барьеры глюкоза проникает путем облегченной диффузии (энергонезависимого транспорта по элек- трохимическому градиенту) при помощи специальных транспортных систем GLUT βклетки поджелудочной железы содержат GLUT-2.

«Инсулинозависимые» ткани (жировая и поперечнополосатая мышечная ткани) содержат GLUT-4. Количество белков – переносчиков глюкозы увеличивается при стимуляции инсулиновых рецепторов.

Эндотелиоциты капилляров головного мозга содержат GLUT-1; этот транспортер обеспечивает инсулинонезависимый (базальный) транспорт глюкозы в нейроны.

Влияние на виды обмена Инсулин влияет на обмен веществ при помощи специфических мембранных инсулиновых рецепторов, состоящих из двух α- и двух β-субъединиц. αСубъединицы расположены с наружной стороны мембран клеток и имеют центры связывания молекул инсулина.

β-субъединицы – трансмембранные домены с тирозинкиназной активностью и тенденцией к взаимному фосфорилированию. Связывание молекулы инсулина с α-субъединицами рецептора стимулирует эндоцитоз, и комплекс «инсулин-рецептор» погружается в цитоплазму клетки.

Пока молекула инсулина связана с рецептором, он пребывает в активированном состоянии и стимулирует процессы фосфорилирования. После разъединения комплекса рецептор «возвращается» в мембрану, а молекула инсулина разрушается лизосомами.

Активированные инсулиновые рецепторы запускают процессы фосфорилирования, активируют некоторые ферменты углеводного обмена и усиливают синтез GLUT-4.

Углеводный обмен Эндогенный инсулин — важнейший регулятор углеводного обмена, экзогенный — специфическое сахаропонижающее средство.

Влияние инсулина на углеводный обмен связано с тем, что он усиливает транспорт глюкозы через клеточную мембрану и ее утилизацию тканями, способствует превращению глюкозы в гликоген в печени.

Инсулин, кроме того, угнетает эндогенную продукцию глюкозы за счет подавления гликогенолиза (расщепление гликогена до глюкозы) и глюконеогенеза (синтез глюкозы из неуглеводных источников — например из аминокислот, жирных кислот ). Помимо гипогликемического, инсулин оказывает ряд других эффектов.

В печени инсулин оказывает на гепатоциты следующие эффекты: глюкоза постоянно поступает в клетки печени через трансмембранный переносчик GLUT 2 инсулин мобилизует дополнительный трансмембранный переносчик GLUT 4, способствуя его встраиванию в плазматическую мембрану гепатоцитов; способствует синтезу гликогена из поступающей в гепатоциты глюкозы, увеличивая транскрипцию гена глюкокиназы и активируя гликогенсинтазу предупреждает распад гликогена, ингибируя активность гликогенфосфорилазы и глюкозо-6 -фосфатазы стимулирует гликолиз и окисление углеводов, активируя глюкокиназу, фосфофруктокиназу и пируваткиназу активирует метаболизм глюкозы через гексозомонофосфатный шунт; ускоряет окисление пирувата, активируя пируватдегидрогеназу; подавляет глюконеогенез, ингибируя активность фосфоенолпируваткарбоксикиназу, фруктозо-1, 6 -бифосфатазу и глюкозо-6 фосфатазу стимулирует гликогенез и синтез триглицеридов, холестерина, белков и ЛПОНП подавляет гликогенолиз, глюконеогенез и кетогенез оказывает анаболитическое и антикатаболическое действие

Анаболические эффекты усиливает поглощение клетками аминокислот (особенно лейцина и валина); усиливает транспорт в клетку ионов калия, а также магния и фосфата; усиливает репликацию ДНК и биосинтез белка; усиливает синтез жирных кислот и последующую их этерификацию — в жировой ткани и в печени инсулин способствует превращению глюкозы в триглицериды; при недостатке инсулина происходит обратное — мобилизация жиров. Антикатаболические эффекты подавляет гидролиз белков — уменьшает деградацию белков; уменьшает липолиз — снижает поступление жирных кислот в кровь.

В скелетных мышцах инсулин: стимулирует синтез белка в рибосомах способствует транспорту аминокислот и глюкозы стимулирует синтез гликогена из поступающей в гепатоциты глюкозы, увеличивая транскрипцию гена гексокиназы и активируя гликогенсинтазу снижает активность гликогенфосфорилазы активирует поступление глюкозы в саркоплазму посредством трансмембранного переносчика GLUT 4, способствуя его встраиванию в плазматическую мембрану стимулирует гликолиз и окисление углеводов, активируя гексокиназу, фосфофруктокиназу и пируваткиназы;

Жировой обмен Влияние инсулина на жировой обмен проявляется в угнетении липолиза, что приводит к снижению поступления свободных жирных кислот в кровоток. Инсулин препятствует образованию кетоновых тел в организме. Инсулин усиливает синтез жирных кислот и их последующую эстерификацию.

Действия инсулина: стимулирует накопления триглицеридов активация гипопротеилипазы, в результате чего жирные кислоты могут поступать в жировые клетки стимулирует поступление глюкозы в жировые клетки, что делаешь альфаглицерофосфат более доступным для синтеза триглицеридов подавляет внутриклеточный липолиз

Белковый обмен Инсулин участвует в метаболизме белков: увеличивает транспорт аминокислот через клеточную мембрану, стимулирует синтез пептидов, уменьшает расход тканями белка, тормозит превращение аминокислот в кетокислоты.

Действие инсулина сопровождается активацией или ингибированием ряда ферментов: стимулируются гликогенсинтетаза, пируват-дегидрогеназа, гексокиназа, ингибируются липазы (и гидролизующая липиды жировой ткани, и липопротеин-липаза, уменьшающая «помутнение» сыворотки крови после приема богатой жирами пищи).

Действие инсулина и глюкагона на метаболизм глюкозы в печени. Глюкоза проникает в гепатоциты путем облегченной диффузии при участии ГЛЮТ 2, не зависимого от инсулина и имеющего высокую Км. В гепатоцитах глюкоза быстро превращается в глюкозо-6 -фосфат глюкокиназой (гексокиназой IV), которая тоже имеет высокую Км (12 м.

М) и не ингибируется продуктом реакции (в отличие от гексокиназ I, II и III). Далее глюкозо-6 фосфат может использоваться по трем направлениям: синтез гликогена, гликолиз, пентозофосфатный путь. Следует отметить, что ацетил-Со. А, образующийся из глюкозы, используется для синтеза жирных кислот и жиров.

Все эти пути стимулируются инсулином на пре- или посттрансляционном уровне.

Влияние инсулина на виды обмена

Влияние инсулина на обмен электролитов не менее сильно, чем на обмен углеводов, белков и жиров. Под действием инсулина повышается проницаемость клеточных мембран для кальция, магния, фосфора, калия и других электролитов.

При инфарктах, тяжелых отравлениях, заболеваниях печени и других тяжелых состояниях внутривенно капельно вводят так называемые поляризующие смеси, которые состоят из раствора глюкозы, небольшого количества инсулина, солей магния и калия.

Под действием инсулина глюкоза, калий и магний быстро проникают внутрь клетки, улучшая энергетический обмен и стабилизируя заряд клеточных мембран. Инсулин также повышает проницаемость клеток для витаминов, которые легче всасываются клетками организма.

Заместительная терапия Для больных сахарным диабетом введение инсулина – это заместительная терапия, направленная на нормализацию состояния. Заместительная терапия — используется при дефиците естественных биогенных веществ.

К средствам заместительной терапии относятся ферментные препараты (панкреатин, панзинорм и т. д. ), гормональные лекарственные средства (инсулин при сахарном диабете, тиреоидин при микседеме), препараты витаминов (витамин D, например, при рахите).

Препараты заместительной терапии, не устраняя причины заболевания, могут обеспечивать нормальное существование организма в течение многих лет.

Заместительная гормональная терапия в климактерии Наступление менопаузы является естественным процессом, сущность которого заключается в возрастном снижении и “выключении” функции яичников вследствие истощения их фолликулярного аппарата, приводящее к развитию гормонодефицитного состояния.

Использование заместительной гормональной терапии ЗГТ обеспечивает реальную возможность корректировать проявления эстроген-дефицитного состояния и, следовательно, проводить лечение и профилактику ранних и поздних осложнений климактерического синдрома у женщин старшей возрастной группы.

Цель ЗГТ – фармакологически заменить гормональную функцию яичников у женщин, испытывающих дефицит половых гормонов. При ЗГТ используют эстрогены и прогестагены.

Гормонозаместительная терапия предотвращает изменение структуры и функций внутренней выстилки матки. Курс прогестерона обычно принимают в течение 10 -14 дней, в зависимости от типа гормона. После завершения курса приема прогестерона наблюдается кровотечение, похожее на обычную менструацию.

Существует три способа приема эстрогена Оральный (таблетки); Подкожный (имплантанты) Наружный (в форме геля или гормонального пластыря).

Все эти способы восполнения дефицита эстрогена в организме помогают эффективно уменьшить неприятные проявления климакса и предотвратить развитие остеопороза и сердечно-сосудистых заболеваний.

Биологические эффекты прогестагенов Они способны вызывать секреторную трансформацию пролиферирующего под влиянием эстрогенов эндометрия. Кроме того, прогестагены могут обладать другими эффектами: эстрогенным, антиэстрогенным, андрогенным, антигонадотропным, глюкокортикоидоподобным и АКТГ– подобным

Препараты инсулина по длительности действия подразделяют на: препараты короткого и ультракороткого действия — имитируют нормальную физиологическую секрецию инсулина поджелудочной железой в ответ на стимуляцию препараты средней продолжительности препараты длительного действия — имитируют базальную (фоновую) секрецию инсулина, а также комбинированные препараты (сочетают оба действия).

Литература 1) Фармакология / Под ред. проф. Р. Н. Аляутдина / Глава 31 2) Статья Смирновой О. М. «Нарушение секреции инсулина – главный эндокринный дефект при сахарном диабете 2 типа» 3) Статья «Инсулины» / http: //www. rlsnet.

ru/articles_406. htm 4) Нормальная физиология: учебник / Орлов Р. С. , Ноздрачев А. Д. – 2 -е изд. / Глава 18 5) Статья «Особенности сахарного диабета» 6) Статья «Сахарный диабет» / http: //www. childcareinfo. ru/study-78 -8.

html

Источник: https://present5.com/insulin-vliyanie-na-uglevodnyj-zhirovoj-i-belkovyj-obmen/

Влияние инсулина на жировой обмен

Влияние инсулина на белковый обмен

При физической нагрузке потребление глюкозы возрастает в несколько раз. При этом увеличиваются гликогенолиз, липолиз и глюконеогенез, регулируемые инсулином, а также функциональными антагонистами инсулина (глюкагон, катехоламины, СТГ, кортизол).

После приёма пищи всосавшиеся в кишечнике моносахариды, триглицериды и аминокислоты по воротным венам поступают в печень, где различные моносахариды превращаются в глюкозу.

Глюкоза в печени хранится в виде гликогена (синтез гликогена происходит также в мышцах), в печени окисляется лишь малая часть глюкозы.

Глюкоза, не захваченная гепатоцитами, оказывается в системе общей циркуляции и поступает в различные органы, где окисляется до воды и CO2.и обеспечивает энергетические потребности этих органов.

à Инкретины. При поступления химуса в кишечник из эндокринных клеток его стенки во внутреннюю среду организма выделяются так называемые инкретины (желудочный ингибирующий пептид, энтероглюкагон [глицентин] и глюкагоноподобный пептид 1), потенцирующие вызванную глюкозой секрецию инсулина.

à Всасываниеглюкозы из просвета кишечника происходит при помощи встроенных в апикальную плазматическую мембрану энтероцитов Na+–зависимых транспортёров сочетанного переноса ионов натрия и глюкозы, требующих (в отличие от переносчиков глюкозы GLUT) затрат энергии. Напротив, выход глюкозы из энтероцитов во внутреннюю среду организма, происходящий через плазмолемму их базальной части, происходит путём облегчённой диффузии.

à Выделениеглюкозы через почки

¨ Фильтрация молекул глюкозы из просвета кровеносных капилляров почечных телец в полость капсулы Боумена–Шумлянского осуществляется пропорционально концентрации глюкозы в плазме крови.

¨ Реабсорбция. Обычно вся глюкоза реабсорбируется в первой половине проксимальных извитых канальцев со скоростью 1,8 ммоль/мин (320 мг/мин). Реабсорбция глюкозы происходит (как и её всасывание в кишечнике) при помощи сочетанного переноса ионов натрия и глюкозы.

¨ Секреция. Глюкоза у здоровых лиц не секретируется в просвет канальцев нефрона.

¨ Глюкозурия. Глюкоза появляется в моче при её содержании в плазме крови свыше 10 мМ.

· Междуприёмами пищи глюкоза поступает в кровь из печени, где образуется за счёт гликогенолиза (распад гликогена до глюкозы) и глюконеогенеза (образование глюкозы из аминокислот, лактата, глицерола и пирувата). Из-за малой активности глюкозо-6-фосфатазы глюкоза не поступает в кровь из мышц.

à Впокое содержание глюкозы в плазме крови составляет 4,5–5,6 мМ, а общее содержание глюкозы (расчёты для взрослого здорового мужчины) в 15 л межклеточной жидкости — 60 ммоль (10,8 г), что примерно соответствует ежечасному расходу этого сахара. Следует помнить, что ни в ЦНС, ни в эритроцитах глюкоза не синтезируется и не хранится в виде гликогена и в то же время является крайне важным источником энергии.

à Между приёмами пищипреобладают гликогенолиз, глюконеогенез и липолиз. Даже при непродолжительном голодании (24–48 часов) развивается обратимое состояние, близкое к сахарному диабету — голодный диабет. При этом нейроны начинают использовать в качестве источника энергии кетоновые тела.

à Глюкагон. Эффекты глюкагона (см. ниже).

à Катехоламины. Физическая нагрузка через гипоталамические центры (гипоталамический глюкостат) активирует симпатоадреналовую систему.

В результате уменьшается выброс инсулина из b-клеток, увеличивается секреция глюкагона из a-клеток, возрастает поступление в кровь глюкозы из печени, усиливается липолиз.

Катехоламины также потенцируют вызванное T3 и T4 увеличение потребления кислорода митохондриями.

à Гормонроста способствует увеличению содержания глюкозы в плазме крови за счёт усиления гликогенолиза в печени, уменьшения чувствительности мышц и жировых клеток к инсулину (в результате уменьшается поглощение ими глюкозы), а также за счёт стимуляции выброса глюкагона из a-клеток.

à Глюкокортикоидыстимулируют гликогенолиз и глюконеогенез, но подавляют транспорт глюкозы из крови в разные клетки.

· Глюкостат. Регуляция содержания глюкозы во внутренней среде организма имеет целью поддержание гомеостаза этого сахара в пределах нормальных значений (концепция глюкостата) и осуществляется на разных уровнях.

Выше рассмотрены механизмы поддержания гомеостаза глюкозы на уровне поджелудочной железы и органов–мишеней инсулина (периферический глюкостат).

Считают, что центральную регуляцию содержания глюкозы (центральный глюкостат) осуществляют чувствительные к инсулину нервные клетки гипоталамуса, посылающие далее сигналы активации симпатоадреналовой системы, а также к синтезирующим кортиколиберин и соматолиберин нейронам гипоталамуса.

Отклонения содержания глюкозы во внутренней среде организма от нормальных значений, о чём судят по содержанию глюкозы в плазме крови, приводят к развитию гипергликемии или гипогликемии.

à Гипогликемия — снижение содержания глюкозы в крови менее 3,33 ммоль/л. Гипогликемия может возникать у здоровых лиц через несколько дней голодания. Клинически гипогликемия проявляется при снижении уровня глюкозы ниже 2,4–3,0 ммоль/л.

Ключ к диагностике гипогликемии — триада Уиппла: нервно-психические проявления при голодании, глюкоза крови менее 2,78 ммоль/л, купирование приступа пероральным или внутривенным введением раствора декстрозы (40–60 мл 40% раствора глюкозы).

Крайнее проявление гипогликемии — гипогликемическая кома.

à Гипергликемия. Массовое поступление глюкозы во внутреннюю среду организма приводит к увеличению её содержания в крови — гипергликемии (содержание глюкозы в плазме крови превышает 6,7 мМ.). Гипергликемия стимулирует секрецию инсулина из b-клеток и подавляет секрецию глюкагона из a-клеток островков Лангерханса.

Оба гормона блокируют в печени образование глюкозы как в ходе гликогенолиза, так и глюконеогенеза. Гипергликемия — так как глюкоза является осмотически активным веществом — может привести к обезвоживанию клеток, развитию осмотического диуреза с потерей электролитов. Гипергликемия может вызвать повреждение многих тканей, в особенности кровеносных сосудов.

Гипергликемия — характерный симптом сахарного диабета.

¨ Сахарный диабет типа I. Недостаточная секреция инсулина приводит к развитию гипергликемии — повышенного содержания глюкозы в плазме крови.

Постоянный дефицит инсулина является причиной развития генерализованного и тяжёлого метаболического заболевания с поражением почек (диабетическая нефропатия), сетчатки (диабетическая ретинопатия), артериальных сосудов (диабетическая ангиопатия), периферических нервов (диабетическая невропатия) — инсулинзависимого сахарного диабета (сахарный диабет типа I, начинается заболевание преимущественно в молодом возрасте). Эта форма сахарного диабета развивается в результате аутоиммунной деструкции b-клеток островков Лангерханса поджелудочной железы и значительно реже вследствие мутаций гена инсулина и генов, принимающих участие в синтезе и секреции инсулина. Постоянный дефицит инсулина приводит к массе последствий: например, в печени образуется значительно больше, чем в у здоровых лиц, глюкозы и кетонов, что в первую очередь сказывается на функции почек: развивается осмотический диурез. Поскольку кетоны являются сильными органическими кислотами, то у больных без лечения неизбежен метаболический кетоацидоз. Лечение сахарного диабета типа I — заместительная терапия внутривенным введением препаратов инсулина. В настоящее время применяют препараты рекомбинантного (полученного методами генной инженерии) инсулина человека. Применявшиеся с 30-х годов XX века инсулины свиней и коров отличаются от инсулина человека 1 и 3 аминокислотными остатками, что достаточно для развития иммунологических конфликтов (согласно данным последних рандомизированных клинических испытаний, использовать свиные инсулины можно наравне с инсулином человека. Парадоксально, но факт!)

¨ Сахарный диабет типа II.

При этой форме сахарного диабета («диабет пожилых», развивается преимущественно после 40 лет жизни, встречается в 10 раз чаще, чем сахарный диабет типа I) b‑клетки островков Лангерханса не погибают и продолжают синтезировать инсулин (отсюда другое название заболевания — инсулин-независимый сахарный диабет). При этой болезни либо наблюдается нарушение секреции инсулина (избыточное содержание сахара в крови не увеличивает секрецию инсулина), либо извращена реакция клеток–мишеней на инсулин (развивается нечувствительность — резистентность к инсулину), либо имеют значение оба фактора. Поскольку дефицита инсулина нет, то вероятность развития метаболического кетоацидоза низка. В большинстве случаев лечение сахарного диабета типа II проводят при помощи перорального приёма производных сульфонилмочевины (см. выше раздел «Регуляторы секреции инсулина»).

· Печень. Инсулин в гепатоцитах:

à способствует синтезу жирных кислот из глюкозы путём активирования ацетил-КоА‑карбоксилазы и синтазы жирных кислот. Жирные кислоты, присоединяя a-глицерофосфат, превращаются в триглицериды.

à подавляет окисление жирных кислот вследствие увеличенного превращения ацетил-КоА в малонил-КоА. Малонил-КоА ингибирует активность карнитин ацилтрансферазы (транспортирует жирные кислоты из цитоплазмы в митохондрии для их b‑окисления и превращения в кетокислоты. Другими словами, инсулин оказывает антикетогенный эффект.

· Жироваяткань. В липоцитах инсулин способствует превращению свободных жирных кислот в триглицериды и их отложению в виде жира. Этот эффект инсулина осуществляется несколькими путями. Инсулин:

à увеличивает окисление пирувата путём активирования пируватдегидрогеназы и ацетил-КоА‑карбоксилазы, что благоприятствует синтезу свободных жирных кислот;

à увеличивает транспорт глюкозы в липоциты, последующее превращение которой приводит к появлению a-глицерофосфата.

à способствует синтезу триглицеридов из a-глицерофосфата и свободных жирных кислот;

à предупреждает расщепление триглицеридов на глицерол и свободные жирные кислоты, ингибируя активность гормон-чувствительной триглицерид липазы;

à активирует синтез липопротеин липазы, транспортируемой к клеткам эндотелия, где этот фермент расщепляет триглицериды хиломикронов и липопротеинов очень низкой плотности.

à Эти процессы существенно замедляются при дефиците инсулина.

Ú Сахарный диабет и атеросклероз. В печени избыток жирных кислот на фоне дефицита инсулина способствует превращению жирных кислот в фосфолипиды и холестерол.

Эти вещества вместе с триглицеридами поступают в кровь в виде липопротеинов, где их концентрация может увеличиваться в 2–3 раза, достигая нескольких процентов (в норме 0,6%).

Такая высокая концентрация холестерола (особенно в составе липопротеинов низкой плотности) приводит у диабетиков к быстрому развитию атеросклероза.

Ú Кетоацидоз при сахарном диабете. При дефиците инсулина и на фоне избыточного содержания жирных кислот в печени образуется ацетоуксусная кислота.

В норме значительная часть ацетоуксусной кислоты в разных клетках организма, проходит ряд превращений и используется для энергии. Отсутствие инсулина подавляет использование ацетоуксусной кислоты периферическими тканями.

Таким образом, избыток ацетоуксусной кислоты, выделяемой печенью, не используется периферическими тканями. Возникает тяжёлое состояние повышенной кислотности жидкостей тела — ацидоз.

Кроме этого, часть ацетоуксусной кислоты превращается в b-гидроксимасляную кислоту и ацетон, называемые кетоновыми телами. Накопление в организме больших количеств этих веществ вместе с ацетоуксусной кислотой называется кетозом.

Источник: https://studopedia.su/9_104515_vliyanie-insulina-na-zhirovoy-obmen.html

Моя железа
Добавить комментарий