Биологические активные соединения ферменты витамины гормоны лекарства

Ферменты, гормоны, витамины и лекарства

Биологические активные соединения ферменты витамины гормоны лекарства

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Ферменты

Ферменты, или энзимы обычно белковые молекулы или молекулы РНК (рибозимы) или их комплексы, ускоряющие (катализирующие) химические реакции в живых системах. Реагенты в реакции, катализируемой ферментами, называются субстратами, а получающиеся вещества — продуктами.

Ферменты специфичны к субстратам. Ферментативная активность может регулироваться активаторами и ингибиторами. Белковые ферменты синтезируются на рибосомах, а РНК — в ядре. Термины «фермент» и «энзим» давно используют как синонимы. Наука о ферментах называется энзимологией.

Активность ферментов зависит от условий в клетке или организме — давления, кислотности среды, температуры, концентрации растворенных солей Ферменты широко используются в народном хозяйстве — пищевой, текстильной промышленности, в фармакологии.

Ещё шире область использования ферментов в научных исследованиях и в медицине.

Функции ферментов. Ферменты присутствуют во всех живых клетках и способствуют превращению одних веществ (субстратов) в другие (продукты). Ферменты выступают в роли катализаторов практически во всех биохимических реакциях, протекающих в живых организмах — ими катализируется более 4000 разных биохимических реакций.

Ферменты играют важнейшую роль во всех процессах жизнедеятельности, направляя и регулируя обмен веществ организма. Подобно всем катализаторам, ферменты ускоряют как прямую, так и обратную реакцию, понижая энергию активации процесса. Химическое равновесие при этом не смещается ни в прямую, ни в обратную сторону.

Отличительной особенностью ферментов по сравнению с небелковыми катализаторами является их высокая специфичность — константа связывания некоторых субстратов с белком может достигать 10?10 моль/л и менее. Каждая молекула фермента способна выполнять от нескольких тысяч до нескольких миллионов «операций» в секунду.

Например, одна молекула фермента ренина, содержащегося в слизистой оболочке желудка теленка, створаживает около 106 молекул казеиногена молока за 10 мин при температуре 37 °C.

При этом эффективность ферментов значительно выше эффективности небелковых катализаторов — ферменты ускоряют реакцию в миллионы и миллиарды раз, небелковые катализаторы — в сотни и тысячи раз.

Классификация ферментов. По типу катализируемых реакций ферменты подразделяются на 6 классов

1: Оксидоредуктазы, катализирующие окисление или восстановление. Пример: каталаза, алкогольдегидрогеназа

2: Трансферазы, катализирующие перенос химических групп с одной молекулы субстрата на другую. Среди трансфераз особо выделяют киназы, переносящие фосфатную группу, как правило, с молекулы АТФ.

3: Гидролазы, катализирующие гидролиз химических связей. Пример: эстеразы, пепсин, трипсин, амилаза, липопротеинлипаза

4: Лиазы, катализирующие разрыв химических связей без гидролиза с образованием двойной связи в одном из продуктов.

5: Изомеразы, катализирующие структурные или геометрические изменения в молекуле субстрата.

6: Лигазы, катализирующие образование химических связей между субстратами за счет гидролиза АТФ. Пример: ДНК-полимераза

Будучи катализаторами, ферменты ускоряют как прямую, так и обратную реакции, поэтому, например, лиазы способны катализировать и обратную реакцию — присоединение по двойным связям.

2. Гормоны

Гормоны – биологически активные сигнальные химические вещества, выделяемые эндокринными железами непосредственно в организме и оказывающие дистанционное сложное и многогранное воздействие на организм в целом либо на определённые органы и ткани-мишени.

Гормоны служат гуморальными (переносимыми с кровью) регуляторами определённых процессов в различных органах и системах.

Существуют и другие определения, согласно которым трактовка понятия гормон более широка: «сигнальные химические вещества, вырабатываемые клетками тела и влияющие на клетки других частей тела».

Это определение представляется предпочтительным, так как охватывает многие традиционно причисляемые к гормонам вещества: гормоны животных, которые лишены кровеносной системы (например, экдизоны круглых червей и др.), гормоны позвоночных, которые вырабатываются не в эндокринных железах (простагландины, эритропоэтин и др.

), а также гормоны растений используются в организме для поддержания его гомеостаза, а также для регуляции многих функций. Открыты в 1902 году Старлингом и Бейлиссом. Все гормоны реализуют своё воздействие на организм или на отдельные органы и системы при помощи специальных рецепторов к этим гормонам.

Рецепторы к гормонам делятся на 3 основных класса:

рецепторы, связанные с ионными каналами в клетке (ионотропные рецепторы)

рецепторы, являющиеся ферментами или связанные с белками-передатчиками сигнала с ферментативной функцией (метаботропные рецепторы, например, GPCR)

рецепторы ретиноевой кислоты, стероидных и тиреоидных гормонов, которые связываются с ДНК и регулируют работу генов. По химическому строению известные гормоны позвоночных делят на основные классы:

3. Витамины

Витамины — группа низкомолекулярных органических соединений относительно простого строения и разнообразной химической природы.

Это сборная по химической природе группа органических веществ, объединённая по признаку абсолютной необходимости их для гетеротрофного организма в качестве составной части пищи.

Витамины содержатся в пище в очень малых количествах, и поэтому относятся к микронутриентам.

Наука на стыке биохимии, гигиены питания, фармакологии и некоторых других медико-биологических наук, изучающая структуру и механизмы действия витаминов, а также их применение в лечебных и профилактических целях, называется витаминологией.

Витамины участвуют во множестве биохимических реакций, выполняя каталитическую функцию в составе активных центров большого количества разнообразных ферментов либо выступая информационными регуляторными посредниками, выполняя сигнальные функции экзогенных прогормонов и гормонов.

Витамины не являются для организма поставщиком энергии и не имеют существенного пластического значения. Однако витаминам отводится важнейшая роль в обмене веществ. Концентрация витаминов в тканях и суточная потребность в них невелики, но при недостаточном поступлении витаминов в организм наступают характерные и опасные патологические изменения.

Большинство витаминов не синтезируются в организме человека.

Поэтому они должны регулярно и в достаточном количестве поступать в организм с пищей или в виде витаминно-минеральных комплексов и пищевых добавок. Исключения составляют витамин К, достаточное количество которого в норме синтезируется в толстом кишечнике человека за счёт деятельности бактерий, и витамин В3, синтезируемый бактериями кишечника из аминокислоты триптофана.

С нарушением поступления витаминов в организм связаны 3 принципиальных патологических состояния: недостаток витамина — гиповитаминоз, отсутствие витамина — авитаминоз, и избыток витамина — гипервитаминоз.

Известно около полутора десятков витаминов. Исходя из растворимости, витамины делят на жирорастворимые — A, D, E, F, K и водорастворимые — все остальные (B, C и др.). Жирорастворимые витамины накапливаются в организме, причём их депо являются жировая ткань и печень.

Водорастворимые витамины в существенных количествах не депонируются (не накапливаются), и при избытке выводятся с водой. Это объясняет то, что гиповитаминозы довольно часто встречаются относительно водорастворимых витаминов, а гипервитаминозы — чаще наблюдаются относительно жирорастворимых витаминов.

Витамины отличаются от других органических пищевых веществ тем, что не включаются в структуру тканей и не используются организмом в качестве источника энергии (не обладают калорийностью).

4. Лекарства

Лекарственные средства — вещества, или смесь веществ синтетического или природного происхождения в виде лекарственной формы (таблетки, капсулы, раствора и т.п.).

Перед употреблением в медицинской практике лекарственные средства должны проходить клинические исследования и получать разрешение к применению для профилактики, диагностики, либо лечения заболеваний. Существует несколько классификаций, основанных на различных признаках лекарственных средств: фермент гормон витамин

по химическому строению (например соединения-производные фурфурола, имидазола, пиримидина и другие)

по происхождению – природные, синтетические, минеральные

по фармакологической группе – наиболее распространенная в России классификация, основана на воздействии препарата на организм человека

нозологическая классификация – классификация по заболеваниям, для лечения которых используется лекарственный препарат

анатомо-терапевтическо-химическая классификация (ATХ) – международная классификация, в которой учитывается фармакологическая группа препарата, его химическая природа и нозология заболевания для лечения которого предназначен препарат.

Размещено на Allbest.ru

  • Понятие витаминов как группы низкомолекулярных органических соединений, их участие в биохимических реакциях. Роль витаминов в обмене веществ, их классификация. Основные функции водорастворимых и жирорастворимых витаминов. Суточная потребность в витаминах.презентация [1,1 M], добавлен 13.11.2013

Источник: https://otherreferats.allbest.ru/medicine/00493194_0.html

Ферменты. Витамины. Гормоны. Лекарства

Биологические активные соединения ферменты витамины гормоны лекарства

  1. Водорастворимые витамины.

Ферменты(от лат. fermentum – закваска)- специфические белковые катализаторы, присутствующие во всех живых клетках.

Почти все биохимические реакции, протекающие в любом организме и в своём закономерном сочетании составляющие его обмен веществ, катализируются соответствующими ферментами.

Направляя и регулируя обмен веществ, ферменты играют важнейшую роль во всех процессах жизнедеятельности.

Витамины – органические биологически активные вещества, необходимые для нормальной жизнедеятельности человека и животных; они играют решающую роль в обмене веществ. Витамины не синтезируются в организме или синтеризуются в недостаточном количестве.

Они поступают с растительной или животной пищей. Большинство витаминов участвует в обмене веществ, входя в состав более чем 100 ферментов или конферментов. Все витамины делят на жирорастворимые ( A, D, E, K), и водорастворимые ( B, C, PP и др.).

Иногда одной буквой обозначаются несколько веществ или их смеси.

Рассмотрим некоторые из витаминов.

Витамин А ( ретинол, аксерофтол) – желтоватые кристаллы. Окисляется кислородом воздуха, но устойчив к нагреванию.

Содержится в молоке, сливочном масле, яичном желтке и рыбьем жире; синтезируется в промышленном масштабе.

Недостаток витамина в организме ведет к ослаблению адаптации к темноте (ночная слепота) и снижению сопротивляемости к инфекциям. Провитаминами служат природные каротиноиды, присутствующие во многих растениях.

Витамин В1( тиамин, аневрин ) – белые кристаллы, неустойчив к нагреванию при варке пищи. Содержится только в растениях и микроорганизмах, особенно богаты витамином зародыши пшеницы и дрожжи. При авитаминозе нарушается углеводный обмен и развивается периферийный полиневрит – болезнь бери-бери

Витамин В2 ( рибофлавин, лактофлавин) – оранжево – желтые кристаллы горького вкуса, водный раствор окрашен в желто – зеленый цвет с характерной флуоресценцией. При варке не разрушается.

Широко распространен в природе как в микроорганизмах ( дрожжи ), так и в растительных ( бобовые ) и в животных клетках ( мясо, молоко, яичный желток ). Синтезируется только растениями.

При недостатке развиваются дерматиты, конъюктивит и анемия.

ВИТАМИН В6.

Витамин В6 (пиридоксол, адермин) – белое кристаллическое вещество. Не разлагается при варке пищи. Широко распространен в природе, содержится в печени, почках, дрожжах, рисовых отрубях, бобах, пшенице. При авитаминозе развиваются дерматиты, стоматит и анемия.Дети нуждаются в витамине больше, чем взрослые

ВИТАМИН ВС.

Витамин ВС (фолацин)- группа соединений, включающих фоливую кислоту и ее производные. Содержится во всех животных тканях, зеленых растениях и микроорганизмах. При авитаминозе развивается тяжелая форма анемии.

ВИТАМИН C.

Витамин С – группа соединений; важнейшее из них – аскорбиновая кислота – белые кристаллы без запаха, с сильным кислым вкусом. Витамин С чувствителен к действию света и кислорода воздуха, при нагревании без доступа воздуха витамин не разрушается. Содержится в различных растениях (смородине, шиповнике и др.

), особенно его много в свежих фруктах и овощах, Участвует в процессах биосинтеза, главным образом в синтезе РНК. При гиповитаминозе повышается проницаемость капилляров, нарушается обмен в соединительных тканях. а при авитаминозе развивается болезнь цинга, или скорбут (суставные боли, кровотечения, выпадение зубов.

Витамин С получают в промышленном масштабе, исходя из D – глюкозы.

Витамины группы D (кальциферолы) представляют собой белые кристаллы, устойчивые к действию кмслорода воздуха и нагреванию. При авитаминозе детского организма нарушается обмен кальция и развивается костный рахит.

Из витаминов группы Е (токоферолы) наиболее физиологически активен витамин Е – беловато – маслянистая жидкость; не разрушается при варке. в природе токоферолы синтезируются в растениях; наиболее богаты ими масла зародышей пшеницы, кукурузы, хлопка, сои.

При недостатке витамина нарушается нормальное развитие эмбриона, возникают мышечная дистрофия и болезни печени. Витамин Е используют в лечебных целях, а также как антиоксидант, стабилизирующий препараты витиминов А, D и витаминов группы F – группы незаменимых жирных кислот.

Витамины группы К( производные нафтохинона). Среди них витамин К1 – светло – желтое, устойчивое к нагреванию масло. Витамины содержатся в зеленых растениях и синтезируются бактериями.

При недостатке нарушается свертывание крови и развивается диатез. Потребность человека витаминах группы К обеспечивается их синтезом кишечной микрофлорой. При гиповитаминозе разрушаются эритроциты.

Гормо́ны — биологически активные вещества органической природы, вырабатывающиеся клетках желёз внутренней секреции, поступающие в кровь и оказывающие регулирующее влияние на обмен веществ и физиологические функции. Гормоны служат гуморальными (переносимыми с кровью)регуляторами определённых процессов в различных органах и системах.

Лекарством называется только такое врачебное средство, которое при употреблении в известном определенном количестве может своими физическими или химическими свойствами устранить, ослабить или предупредить болезненные явления в организме.

Периодический закон и периодическая система химических элементов Д.И. Менделеева в свете учения о строении атома. Развитие научных знаний о периодическом законе и периодической системе.

В 1869 г. Д. И. Менделеев на основе анализа свойств простых веществ и соединений сформулировал Периодический закон:

Свойства простых тел… и соединений элементов находятся в периодической зависимости от вели­чины атомных масс элементов.

На основе периодического закона была составлена периодическая система элементов. В ней элементы со сходными свойствами оказались объединены в верти­кальные столбцы — группы. Менделеев предложил периодической закон в то время, когда не было ничего известно о строении атома.

После того, как в XX веке была предложена планетарная модель атома, периодический закон формулируется следующим образом:

Свойства химических элементов и соединений на­ходятся в периодической зависимости от зарядов атомных ядер.

Заряд ядра равен номеру элемента в периодической системе и числу электронов в электронной оболочке атома.

В Периодической системе номер периода равен числу электронных уровней в атоме, номер группы для эле­ментов главных подгрупп равен числу электронов на внешнем уровне.

Причиной периодического изменения свойств химиче­ских элементов является периодическое заполнение электронных оболочек. После заполнения очередной оболочки начинается новый период. Периодическое изменение элементов ярко видно на изменении состава и свойств и свойств оксидов.

Научное значение периодического закона.

Периоди­ческий закон позволил систематизировать свойства хи­мических элементов и их соединений. При составлении периодической системы Менделеев предсказал сущест­вование многих еще не открытых элементов, оставив для них свободные ячейки, и предсказал многие свойст­ва неоткрытых элементов, что облегчило их открытие.

Дата добавления: 2015-04-21; просмотров: 54; Нарушение авторских прав

Источник: https://lektsii.com/2-55682.html

Презентация по химии на тему:

Биологические активные соединения ферменты витамины гормоны лекарства

Инфоурок › Химия ›Презентации›Презентация по химии на тему: “Ферменты, Гормоны, БАДы, Витамины.”

Описание презентации по отдельным слайдам:

1 слайдОписание слайда:

Методическая разработка комбинированного урока по теме: Ферменты, Гормоны, БАДы, Витамины. 10 класс

2 слайдОписание слайда:

Ученик должен знать: – Ферменты. Понятие о ферментах как о биологических катализаторах белковой природы. Особенности строения и свойств в сравнении с неорганическими катализаторами. Классификация ферментов. Особенности строения и свойств ферментов: селективность и эффективность.

Зависимость активности ферментов от температуры и рН среды. Значение ферментов в биологии и применение в промышленности. – Витамины. Понятие о витаминах. Их классификация и обозначение. Норма потребления витаминов. Водорастворимые (на примере витаминов С, группы В и Р) и жирорастворимые (на примере витаминов А, D и Е).

Авитаминозы, гипервитаминозы и гиповитаминозы, их профилактика.

3 слайдОписание слайда:

– Гормоны. Понятие о гормонах как биологически активных веществах, выполняющих эндокринную регуляцию жизнедеятельности организмов. Классификация гормонов: стероиды, производные аминокислот, полипептидные и белковые гормоны. Отдельные представители: эстрадиол, тестостерон, инсулин, адреналин.

4 слайдОписание слайда:

Ученик должен уметь: – называть изученные вещества по «тривиальной» или международной номенклатурам; – характеризовать строение и свойства полимеров; – применять полученные знания и умения для безопасного использования веществ и материалов, для решения практических задач в повседневной жизни, для предупреждения явлений, наносящих вред здоровью человека и окружающей среде. – применять полученные знания для объяснения разнообразных химических явлений и свойств веществ, оценки роли химии в развитии современных технологий и получении новых материалов;

5 слайдОписание слайда:

Цели занятия: 1.Дидактические: 1. Изучить: – ферменты, витамины, гормоны , лекарства, их классификация, строение, свойства – значение ферментов, витаминов, гормонов, лекарств в жизни человека. 2. Контроль и коррекция знаний по банку практических заданий.

6 слайдОписание слайда:

Внутрипредметные связи Обеспечивающие темы Обеспечиваемые темы 1. Строениеатома. 2. Строение вещества. 3. Химическиереакции. 4.Химияэлементов(углерод и его соединения). 5. Строение органических веществ. 6. Предельные углеводороды. 7. Карбоновые кислоты. 8. Моносахариды. Биологически активные соединения (ферменты, гормоны,витамины).

7 слайдОписание слайда:

Биологически активные соединения. Ферменты, витамины, гормоны, План 1.Биологически активные соединения. 2.Ферменты. 3.Витамины. 4.Гормоны.

8 слайдОписание слайда:

Биологически активные вещества (БАВ) — химические вещества, необходимые для поддержания жизнедеятельности живых организмов, обладающие высокой физиологической активностью при небольших концентрациях по отношению к определенным группам живых организмов или их клеткам, злокачественным опухолям, избирательно задерживающие или ускоряющие их рост или полностью подавляющие их развитие.

9 слайдОписание слайда:

– В пище находится большинство из них, например: алкалоиды, гормоны и гормоноподобные соединения, витамины, микроэлементы, биогенные амины, нейромедиаторы.

Все они обладают фармакологической активностью, а многие служат ближайшими предшественниками сильнодействующих веществ, относящихся к фармакологии.

– БАВ-микронутриенты применяются для лечебно-профилактических целей в составе биологически активных пищевых добавок.

10 слайдОписание слайда:

– В настоящий момент сложилось мнение, будто биологически активные вещества очень важны, но выполняют лишь частные, вспомогательные функции.

Это ошибочное мнение обязано своим появлением тому, что в специальной и научно-популярной литературе функции каждого БАВ рассматривались в отдельности друг от друга. Этому содействовал и преимущественный акцент на специфических функциях микронутриентов.

В результате появились «штампы» (например, что витамин С служит для профилактики цинги и только). – Биологически активные вещества имеют крайне разнообразные физиологические функции.

11 слайдОписание слайда:

Ферме́нты, или энзи́мы (от лат. fermentum, греч. ζύμη, ἔνζυμον — закваска) — обычно белковые молекулы или молекулы РНК (рибозимы) или их комплексы, ускоряющие (катализирующие) химические реакции в живых системах.

Реагенты в реакции, катализируемой ферментами, называются субстратами, а получающиеся вещества — продуктами.

Ферменты специфичны к субстратам (АТФаза катализирует расщепление только АТФ, а киназа фосфорилазы фосфорилирует только фосфорилазу).

12 слайдОписание слайда:

Ферментативная активность может регулироваться активаторами и ингибиторами (активаторы — повышают, ингибиторы — понижают). Белковые ферменты синтезируются на рибосомах, а РНК — в ядре.

Термины «фермент» и «энзим» давно используют как синонимы (первый в основном в русской и немецкой научной литературе, второй — в англо- и франкоязычной).

Наука о ферментах называется энзимологией, а не ферментологией (чтобы не смешивать корни слов латинского и греческого языков).

13 слайдОписание слайда:

Ферменты присутствуют во всех живых клетках и способствуют превращению одних веществ (субстратов) в другие (продукты). Ферменты выступают в роли катализаторов практически во всех биохимических реакциях, протекающих в живых организмах — ими катализируется более 4000 разных биохимических реакций.

Ферменты играют важнейшую роль во всех процессах жизнедеятельности, направляя и регулируя обмен веществ организма. Подобно всем катализаторам, ферменты ускоряют как прямую, так и обратную реакцию, понижая энергию активации процесса.

Химическое равновесие при этом не смещается ни в прямую, ни в обратную сторону. Отличительной особенностью ферментов по сравнению с небелковыми катализаторами является их высокая специфичность — константа связывания некоторых субстратов с белком может достигать 10−10 моль/л и менее.

Каждая молекула фермента способна выполнять от нескольких тысяч до нескольких миллионов «операций» в секунду.

14 слайдОписание слайда:

Например, одна молекула фермента ренина, содержащегося в слизистой оболочке желудка теленка, створаживает около 106 молекул казеиногена молока за 10 мин при температуре 37 °C. При этом эффективность ферментов значительно выше эффективности небелковых катализаторов — ферменты ускоряют реакцию в миллионы и миллиарды раз, небелковые катализаторы — в сотни и тысячи раз.

15 слайдОписание слайда:

По типу катализируемых реакций ферменты подразделяются на 6 классов: Оксидоредуктазы, катализирующие окисление или восстановление. Пример: каталаза, алкогольдегидрогеназа Трансферазы, катализирующие перенос химических групп с одной молекулы субстрата на другую.

Среди трансфераз особо выделяют киназы, переносящие фосфатную группу, как правило, с молекулы АТФ. Гидролазы, катализирующие гидролиз химических связей.

Пример: эстеразы, пепсин, трипсин, амилаза, липопротеинлипаза Лиазы, катализирующие разрыв химических связей без гидролиза с образованием двойной связи в одном из продуктов. Изомеразы, катализирующие структурные или геометрические изменения в молекуле субстрата.

Лигазы, катализирующие образование химических связей между субстратами за счет гидролиза АТФ. Пример: ДНК-полимераза

16 слайдОписание слайда:

Обычно ферменты именуют по типу катализируемой реакции, добавляя суффикс -аза к названию субстрата (например, лактаза — фермент, участвующий в превращении лактозы). Таким образом, у различных ферментов, выполняющих одну функцию, будет одинаковое название.

Такие ферменты различают по другим свойствам, например, по оптимальному pH (щелочная фосфатаза) или локализации в клетке (мембранная АТФаза). Связь между ферментами и наследственными болезнями обмена веществ была впервые установлена А. Гэрродом в 1910-е гг. Гэррод назвал заболевания, связанные с дефектами ферментов, «врожденными ошибками метаболизма».

В настоящее время известны сотни наследственных заболеваний, связанные с дефектами ферментов. Разработаны методы лечения и профилактики многих из таких болезней.

17 слайдОписание слайда:

Витами́ны (от лат. vita -«жизнь») — группа низкомолекулярных органических соединений относительно простого строения и разнообразной химической природы. Это сборная по химической природе группа органических веществ, объединённая по признаку абсолютной необходимости их для гетеротрофного организма в качестве составной части пищи.

Витамины содержатся в пище в очень малых количествах, и поэтому относятся к микронутриентам.

Витамины участвуют во множестве биохимических реакций, выполняя каталитическую функцию в составе активных центров большого количества разнообразных ферментов либо выступая информационными регуляторными посредниками, выполняя сигнальные функции экзогенных прогормонов и гормонов.

Витамины не являются для организма поставщиком энергии и не имеют существенного пластического значения. Однако витаминам отводится важнейшая роль в обмене веществ. Концентрация витаминов в тканях и суточная потребность в них невелики, но при недостаточном поступлении витаминов в организм наступают характерные и опасные патологические изменения.

18 слайдОписание слайда:

Большинство витаминов не синтезируются в организме человека. Поэтому они должны регулярно и в достаточном количестве поступать в организм с пищей или в виде витаминно-минеральных комплексов и пищевых добавок.

Исключения составляют витамин К, достаточное количество которого в норме синтезируется в толстом кишечнике человека за счёт деятельности бактерий, и витамин В3, синтезируемый бактериями кишечника из аминокислоты триптофана.

С нарушением поступления витаминов в организм связаны 3 принципиальных патологических состояния: недостаток витамина — гиповитаминоз, отсутствие витамина — авитаминоз, и избыток витамина — гипервитаминоз.

19 слайдОписание слайда:

Известно около полутора десятков витаминов. Исходя из растворимости, витамины делят на жирорастворимые — A, D, E, F, K и водорастворимые — все остальные(B, C и др.). Жирорастворимые витамины накапливаются в организме, причём их депо являются жировая ткань и печень.

Водорастворимые витамины в существенных количествах не депонируются (не накапливаются), и при избытке выводятся с водой. Это объясняет то, что гиповитаминозы довольно часто встречаются относительно водорастворимых витаминов, а гипервитаминозы — чаще наблюдаются относительно жирорастворимых витаминов.

Витамины отличаются от других органических пищевых веществ тем, что не включаются в структуру тканей и не используются организмом в качестве источника энергии (не обладают калорийностью).

20 слайдОписание слайда:

Гормо́ны (др.-греч. ὁρμάω — возбуждаю, побуждаю) — биологически активные сигнальные химические вещества, выделяемые эндокринными железами непосредственно в организме и оказывающие дистанционное сложное и многогранное воздействие на организм в целом либо на определённые органы и ткани-мишени.

Гормоны служат гуморальными (переносимыми с кровью) регуляторами определённых процессов в различных органах и системах. Существуют и другие определения, согласно которым трактовка понятия гормон более широка: «сигнальные химические вещества, вырабатываемые клетками тела и влияющие на клетки других частей тела».

Это определение представляется предпочтительным, так как охватывает многие традиционно причисляемые к гормонам вещества: гормоны животных, которые лишены кровеносной системы (например, экдизоны круглых червей и др.), гормоны позвоночных, которые вырабатываются не в эндокринных железах (простагландины, эритропоэтин и др.), а также гормоны растений.

По химическому строению известные гормоны позвоночных делят на основные классы: стероиды, производные полиеновых (полиненасыщенных) жирных кислот, производные аминокислот, белково-пептидные соединения.

21 слайдОписание слайда:

Закрепление нового материала. Фронтальная беседа по следующим вопросам: 1. Что такое ферменты? 2. Что такое витамины? 3. Что такое гормоны?

Скрыть

Важно! Узнайте, чем закончилась проверка учебного центра “Инфоурок”?

Проверен экспертом

Общая информация

Источник: https://infourok.ru/prezentaciya-po-himii-na-temu-fermenti-gormoni-badi-vitamini-3829039.html

Биологически активные вещества (стр. 1 из 6)

Биологические активные соединения ферменты витамины гормоны лекарства

I. Введение.

К биологически активным веществам относятся: ферменты, витамины и гормоны. Это жизненно важные и необходимые соединения, каждое из которых выполняет незаменимую и очень важную роль в жизнедеятельности организма.

Переваривание и усвоение пищевых продуктов происходит при участии ферментов. Синтез и распад белков, нуклеиновых кислот, липидов, гормонов и других веществ в тканях организма представляет собой также совокупность ферментативных реакций.

Впрочем, и любое функциональное проявление живого организма – дыхание, мышечное сокращение, нервно-психическая деятельность, размножение и т.д. – тоже непосредственно связаны с действием соответствующих ферментных систем. Иными словами, без ферментов нет жизни.

Их значение для человеческого организма не ограничивается рамками нормальной физиологии. В основе многих заболеваний человека лежат нарушения ферментативных процессов.

Витамины могут быть отнесены к группе биологическиактивных соединений, оказывающих свое действие на обмен веществ в ничтожных концентрациях.

Это органические соединения различной химической структуры, которые необходимы для нормального функционирования практически всех процессов в организме.

Они повышают устойчивость организма к различным экстремальным факторам и инфекционным заболеваниям, способствуют обезвреживанию и выведению токсических веществ и т.д.

Гормоны – это продукты внутренней секреции, которые вырабатываются специальными железами или отдельными клетками, выделяются в кровь и разносятся по всему организму в норме вызывая определенный биологический эффект.

Сами гормоны непосредственно не влияют на какие-либо реакции клетки. Только связавшись с определенным, свойственным только ему рецептором вызывается определенная реакция.

Нередко гормонами называют и некоторые другие продукты обмена веществ, образующиеся во всех [напр. углекислота] или лишь в некоторых [напр.

ацетилхолин] тканях, обладающие в большей или меньшей степени физиологической активностью и принимающие участие в регуляции функций организма животных Однако такое широкое толкование понятия ” гормоны” лишает его всякой качественной специфичности.

Термином ” гормоны” следует обозначать только те активные продукты обмена веществ, которые образуются в специальных образованиях – железах внутренней секреции.Биологически активные вещества, образующиеся в других органах и тканях, принято называть ” парагормонами”,”гистогормонами”,”биогенными стимуляторами”.

Биологически активные продукты обмена веществ образуются и в растениях, но относить эти вещества к гормонам совершенно не правильно.

А теперь познакомимся с каждой группой веществ, входящей в состав биологически активных, отдельно.

II. Ферменты.

1.История открытия.

В основе всех жизненных процессов лежат тысячи химических реакций. Они идут в организме без применения высокой температуры и давления, т.е. в мягких условиях.

Вещества, которые окисляются в клетках человека и животных, сгорают быстро и эффективно, обогащая организм энергией и строительным материалом. Но те же вещества могут годами храниться как в консервированном [изолированном от воздуха] виде, так и на воздухе в присутствии кислорода.

Возможность быстрого переваривания продуктов в живом организме осуществляется благодаря присутствию в клетках особых биологических катализаторов – ферментов.

Термин “фермент” (fermentum по-латыни означает “бродило”, “закваска” ) был предложен голландским ученым Ван-Гельмонтом в начале XYII века. Так он назвал неизвестный агент , принимающий активное участие в процессе спиртового брожения.

Экспериментальное изучение ферментативных процессов началось в XYIII столетии, когда французский естествоиспытатель Р. Реомюр поставил опыты, чтобы выяснить механизм переваривания пищи в желудке хищных птиц.

Он давал хищным птицам глотать кусочки мяса, заключенные в просверленную металлическую трубочку, которая была прикреплена к тонкой цепочке. Через несколько часов трубочку вытягивали из желудка птицы и выяснилось, что мясо частично растворилось.

Поскольку оно находилось в трубочке и не могло подвергаться механическому измельчению, естественно было предположить, что на него воздействовал желудочный сок. Это предположение подтвердил итальянский естествоиспытатель Л. Спалланцани. В металлическую трубочку, которую заглатывали хищные птицы, Л.

Спалланцани помещал кусочек губки. После извлечения трубки из губки выжимали желудочный сок. Затем нагревали мясо в этом соке, и оно полностью в нем ” растворялось”.

Значительно позже ( 1836г) Т. Шванн открыл в желудочном соке фермент пепсин (от греческого слова pepto – “варю”) под влиянием которого и происходит переваривания мяса в желудке. Эти работы послужили началом изучения так называемых протеолитических ферментов.

Важным событием в развитии науки о ферментах явились работы К.С. Киргоффа. В 1814 г. действительный член Петербургской Академии наук К.С.

Киргофф выяснил, что проросший ячмень способен превращать полисахарид крахмал в дисахарид мальтозу, а экстракт дрожжей расщеплял свекловичный сахар на моносахариды – глюкозу и фруктозу. Это были первые исследования в ферментологии.

Хотя на практике применение ферментативных процессов было известно с незапамятных времен (сбраживание винограда, сыроварение и др.)

В разных изданиях применяются два понятия : “ферменты” и ” энзимы”. Эти названия идентичны. Они обозначают одно и тоже – биологические катализаторы. Первое слово переводится как “закваска” , второе – “в дрожжах”.

Долгое время не представляли,что происходит в дрожжах, какая сила, присутствующая в них, заставляет вещества разрушаться и превращаться в более простые. Только после изобретения микроскопа было установлено, что дрожжи – это скопление большого количества микроорганизмов, которые используют сахар в качестве своего основного питательного вещества.

Иными словами, каждая дрожжевая клетка “начинена” ферментами способными разлагать сахар. Но в то же время были известны и другие биологические катализаторы, не заключенные в живую клетку, а свободно “обитающие” вне ее. Например, они были найдены в составе желудочных соков, клеточных экстрактов.

В связи с этим в прошлом различали два типа катализаторов: считалось, что собственно ферменты неотделимы от клетки и вне ее не могут функционировать, т.е. они “организованы”. А “неорганизованные” катализаторы, которые могут работать вне клетки, называли энзимами.

Такое противопоставление “живых” ферментов и “неживых” энзимов объяснялось влиянием виталистов, борьбой идеализма и материализма в естествознании. Точки зрения ученых разделились. Основоположник микробиологии Л. Пастер утверждал, что деятельность ферментов определяется жизнью клетки. Если клетку разрушить, то прекратиться и действие фермента.

Химики во главе с Ю. Либихом развивали чисто химическую теорию брожения, доказывая, что активность ферментов не зависит от существования клетки.

В 1871 г. русский врач М.М. Манассеина разрушила дрожжевые клетки, растирая их речным песком. Клеточный сок, отделенный от остатков клеток, сохранял свою способность сбраживать сахар.

Через четверть века немецкий ученый Э. Бухнер получил бесклеточный сок прессованием живых дрожжей под давлением до 5*10 Па.

Этот сок, подобно живым дрожжам, сбраживал сахар с образованием спирта и оксида углерода (IV):

фермент

C6H12O6—>2C2H5OH + 2CO2

Работы А.Н. Лебедева по исследованию дрожжевых клеток и труды других ученых положили конец виталистическим представления в теории биологического катализа, а термины “фермент” и “энзим” стали применять как равнозначные.

2.Свойства ферментов.

Будучи белками, ферменты обладают всеми их свойствами. Вместе с тем биокатализаторы характеризуются рядом специфических качеств, тоже вытекающих из их белковой природы.

Эти качества отличают ферменты от катализаторов обычного типа.

Сюда относятся термолабильность ферментов, зависимость их действия от значения рН среды, специфичность и, наконец, подверженность влиянию активаторов и ингибиторов.

Термолабильность ферментов объясняется тем, что температура, с одной стороны, воздействует на белковую часть фермента, приводя при слишком высоких значениях к денатурации белка и снижению каталитической функции, а с другой стороны, оказывает влияние на скорость реакции образования фермент-субстратного комплекса и на все последующие этапы преобразования субстрата, что ведет к усилению катализа.

Зависимость каталитической активности фермента от температуры выражается типичной кривой. До некоторого значения температуры (в среднем до 5О°С) каталитическая активность растет, причем на каждые 10°С примерно в 2 раза повышается скорость преобразования субстрата.

В то же время постепенно возрастает количество инактивированного фермента за счет денатурации его белковой части.

При температуре выше 50°С денатурация ферментного белка резко усиливается и, хотя скорость реакций преобразования субстрата продолжает расти, активность фермента, выражающаяся количеством превращенного субстрата, падает.

Детальные исследования роста активности ферментов с повышением температуры, проведенные в последнее время, показали более сложный характер этой зависимости, чем указано выше: во многих случаях она не отвечает правилу удвоения активности на каждые 10°С в основном из-за постепенно нарастающих конформационных изменений в молекуле фермента.

Температура, при которой каталитическая активность фермента максимальна, называется его температурным оптимумом. Температурный оптимум для различных ферментов неодинаков. В общем для ферментов животного происхождения он лежит между 40 и 50°С, а растительного – между 50 и 60°С.

Однако есть ферменты с более высоким температурным оптимумом, например, у папаина (фермент растительного происхождения, ускоряющий гидролиз белка) оптимум находится при 8О°С.

В то же время у каталазы (фермент, ускоряющий распад Н2О2 до Н2О и О2) оптимальная температура действия находится между 0 и -10°С, а при более высоких температурах происходит энергичное окисление фермента и его инактивация.

Источник: https://mirznanii.com/a/6355/biologicheski-aktivnye-veshchestva

Моя железа
Добавить комментарий